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The paper studies dual integral equations connected with the generalized
Mehler=-Fock transform by means of assoclated spherical functions

m
P—'/:+ir (COSh u)

By a method similar to that developed in [1 and 2] the solutlion can in gene-
ral be expressed in terms of one unknown function which satisfles a regular

Fredholm equation. Certain classes of boundary-value problems in mathemati-
cal physics and the theory of elasticity with mixed boundary conditlons are

indicated which can be solved by the method developed in the paper.

As a specific example the paper solves the problem of an elastic half-
space twisted by a hollow cylindrical die.
1. Conslder dual integral equations of the form
[e0]
S AT P o) [+ g ()] de = ()  (0sa<a)  (1.4)
0

oc
5 TA(T) PPt (osho)mabsirdt =0 (g <ot < o0) 1.2)
0

Here A(r) i1s the function sought and p(+) and f{a) are known functions.
~ (cosh q) are associated spherical functions (m = 0, 1, 2,...).

By introducing an auxiliary function o(t) given by
Xy

A(T) = S @ (t) cos Tt dt (1.3)

and making use of Formulas [ 3]
tam &Py ().

P ()= (M— )i

(A ==coshat) (14)
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S tanh nTP_l/._{,i? (oosha) sin Tt dt = { ’ -y <a (1_5)
H [26osht —coshar)] ™72, £ >«

1t can be shown that Equation (1.2) 1s satisfied identically for any function

@(t) which has a continuous derivative. If we now integrate (1.1) m times

with respect to ) , we reduce this equation to the furm
00

m—1
S A(T) (1 4 g ()] Poyjyix (o) dv = F (at) + 2 eh =y () (1.6)
0 k=0
where o, are constants and (*)
SO
F (a) =SS ce Sf(a) (A2 — 1)~ gy (1.7)
11 1
By substituting (1.3) into (1.6) and using Formula [ 3]
§ P_y 42 (cosbar) cos Tt dv = {([f(‘”"’“ —conht)] ™, :;Z (1.8)
we transform (1.6) into an Abel integral equation
S(D (%) [2 (eosh ot —comn )] " *dz = ¥, (ct) (1.9)
Here 0 P
@)+ 5| 1G(t+ )+ Gt —a)]o(t)dt = D ()
' %
G (y) = S g(t)costy dv (1.10)
o
Since the solution of (1.9) is known,
O (z) = = 3‘1’53 [2 (couh — coshx)] ™%, (1) simh tdlox (1.11)

0

the problem resolves itself into one of determining ofx) from the integral
equation (1.10) with a continuous symmetric kernel.

2. The solution obtained contains m arbitrary constants which can be
found by imposing certain supplementary conditions. Proceeding from the
formulation of the boundary-value problems which lead to the dual integral
equations under discussion (Section 3) and, following the same procedure as
in [1 and 4], we make the requirement that the function

'll) (a,) =\TA (T) tanhﬂ’fpz:/,-l- it (cosha) dv (2.1)

ctg

*) Here and in what follows it 1s assumed that the given functions satisfy
certain conditions which ensure the convergence of the integrals and allow
the order of integration to be reversed, etc.
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is integrable within the range O < g < g, . Substituting (1.3) inte (2.1)
and applying (1.%) and (1.5), we can reduce (2.1) to the form

D(0) [paen, = (A2 — 1)m 2L

anm
%o

__.5 o’ (t) [2 (cosht wccsha)}-‘/’dt} (2'2)

{(P (%) [2 (eosh.otg —cosh ot }'—‘f'—-—

Carrying out the successive integrations by parts, we can show that the
above requirement is equivalent to the condition that

@ (a) =0 (i=0,1,...,m—1) (2.3)
A8 a ~ gy~ 0 the function ¢(a) assumes the order of (coshgy— cosha) 3
It can easily be seen that conditions (2.3) determine the constants 4, .
In fact, if we express ¢(x) in the form of the sum
m—1
? (%) = 91 (%) + 92 (2), P2 () = X enon () (2.4)
=0
and set ® (z) =D, (2) + D, (2), where

d S [2 fosh z — coshot)] ™/ F (o) sinnot dt (2.5)

0

D, (z) = >

n dz

m—1 x ‘
Qp(2) = Dex 770 Ix(@)= —:—5 [2 (osh® — cosn )] ™ eosh™ &t simnat dot (2.6)
K=o 9

we obtain from (1.10) for the required functions & (x) and w,(x) different
Fredholm equations with given right-hand sides & (x) and ¢I./gx . Condi-
tions (2.3) now become the linear algebralc system

Me—1
@8 (ag) + ) ko (ap) =0  (E=01,..,m—1) (2.7)
k=0

in the required quantities ¢, .

If in Expression (2.6) for I,(x) we make the substitution sinh ta =
= 8inh #x 8in g and introduce,the polynomials P;,(8inh #a) = cosh*a , we
can express the integrals I, {x) in the form

i 4 ) ‘ o (2'8)
gmos f=f & 4 :
5 b } - I (z) = - sy 5 P (simn?/,2 sin 6) 8in 6 dO
1]

It follows that they are known polynomlals
! of order 2k + 1 in sinh #x

Fig. 1 3. Certain classes of boundary-value prob-

lems in potential theory and in the theory of

elasticity with mixed boundary conditions reduce to dual integral egquations
of the form (1.1) and (1.2). As en example of one application we shall con-
consider the boundary-value problem for a spherical segment (Fig.1) when the
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required harmonic function u(r, &, #) vanishes on the spherical surface and
satisfies the mixed conditions
u=f(r8), 0<ra dufdz =0, alrd (3.1)
on the flat surface z = O ,
If we introduce toroidal coordinates by means of Formulas [5]

bsinht cos 6 __ bsmnasind __ bsinf a0
T = ta T+ cosB’ Y T comatcosp’ T coma + cosp %gagy)wz)

then the equation of the spherical surface of the segment will be g =y ,
On the flat surface (B = 0) the line of division between boundary conditions
of the first and second kind 1s defined by the circle o =g, (mmh'/yxy = b/a),
and at ¥ « 0, r - b we have that g ~ = ,

We shall seek & solution to the problem which satisfies the condition
Ulg=y =0, 1in the form (*)

i= Yomd T 0SB I e‘"‘“& Bu (r)"%;—‘”i P™ie (coma)dy  (3.3)
M=o °

If we apply the conditions (3.1) and then expand the given function [f
in a Fourier series in the angular coordinate

f=Vemat1 X f,. (x)em (3.4)
Mh=meee 00
we arrive at the dual equations
o0
S B (%) Pl (coma)do = £, ()  O<a<a) (3.5)
0
S By (T) woth YTP M uie (comt) dT =0 (202 < 00) (3.6)

0
which, by means of the substitution B, coth YT = A tanhTT reduce to the
form (1.1) and (1.2). Thus, we have reduced the
problem to a Fredholm equation in which

. cosh (1t — ) T
g(v) = cosh NTcoshyT
Note that in the case when all the boundary
conditions are nonhomogeneous the problem can be
reduced to the dual egaations {(1.1) and (1,2) by

means of the generalized Mehler-Fock integral
transformation (Section 4).

Problems of this sort are encountered, for

example, in the study of stationary processes in
the theory of heat conduction. Dual equations

#) See, for example, {6]. Note that

- re¢ iT — m
PZiisin (coshat) = T‘%H Plijppit foshy)
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of the type (3.5) and 53.6) with m = 1 arise in the probiem of the torsion
of a truncated sphere [1]. It will become c¢lear in similar problems what 1s
meant by the supplementary condition used in Section 2 which, obviously,
amounts to the requirement that the normal derivative 2u/2r iz integrable
over the area r = 0, Osr <g , It can be shown that the solution to the
boundary~value problem in this case 1s unique. In physical problems this
requirement 1s equivalent to the condition that the flow of heat is finite
over the surface 2 « 0, O < r g , or to the condition that the torque

is finite, etc.

In the particular c&se when y = n we arrive at & mixed problem for a
half-space with & doubly connected (r =2 and r = » F1%.2 dividing line
betweeP voundary conditions of the first and second kind {*), It has been
shown L6] that statical problems of the theory of elasticity for a half-
space reduce to such problems when the normal stress 1s glven on the flat
ring (# » 0, @ < r « P) and when the normal displacement is specified on
the remainder of the boundary (the shear stresses are considered to be known
over the whole of the surface z = 0},

In particular we can solve problems on the deformation of an infinite body
with & plane annular alit [7]. A further example of this class of problem
is the electrostatic problem of the field of & circular disk situated in the
opening of a diaphragm.

4, We can apply the method described above to boundary-value problems
for & spheriocal segment when over the areéa =z = 0, 0 < r <aé a homogeneous
boundary condition of the second kind is specified and for z = 0, a<r< ¢
the value of the required function y 1s& given..For the conditlion that

Ulgey =0 the solution retalins the form (3.3) and reduces to the dual
equations .

S TB (1) con TTP Ny 1c fosn) dT = 0 (0<<a <o)

0

Lo

(B P maydr =1 () Co<a<oo) (4.4

0
Expanding J(a) in the form of a generalized Mehler-Fock integral [6]

[e+]

Flo) = (— 1)"‘& Viaoh T Py, 41c (cosmat) fm (T) d¥

. g (4.2)
Jm (2) = S F (o) P27 i (coshat) sinb ot dot

and setting B (1) + (— 1)™17 b tfr,° (1) = A (T) nhit, we arrive at
Equationﬂ

TA(Y [1 4+ g ()] PU iz Gossat) d = R (1) O <<a< o)

S8 Se—Q

(4.3)
A (T)tanh nTP’_T:/z iz (cosha) dt = 0 (ao < o< 20)

Here (4.4)

hx) = (— 1)m+1 X /:n () Tanh T coth YT p:y:/, +ix (o) dv, g(7) ﬂ:%

0
Equations {4.3) differ somewhat in structure from (1.1) and (1.2) and as
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a result the method of Section 1 must be modified. We set
&,
4@ =\ g@t)sinttd, () =0 (4.5)
0
and then Equation (4.3) will be satisfled; after the necessary transforma-
tions we arrive at the Fredholm integral equation (1.10) with the kernel

K(z,t) =Gt —2)— G +2) (4.6)

and the right-hand side
X
D () = -:f;—g [2 (con T — coshat)] ™ b (t) sinh ot dov (4.7)
/]

The constants o, which appear in h(a)(see (1.6)} can be found from the
condition that au/az is integrable over the area »* = 0, a<r<bd,
which, after computations as before, reduces to {2.3).

Note that for the case of a half-space (y = n) , by means of dual equa-
tions we can derive a sclution for mixed boundary-value problems of a slightly
different type when a boundary condition of the first kind 1s specifiled on
the ring 2 = 0, a<r <? and a condition of the second kind 1s specified
on the remainder of the boundary. An example of such a case, would be the
electrostatic problem of a flat ring situated in an arbitrary external field.
Mathematically this 1s equivalent to the procblem of the equilibrium of an
elastie half-space with the following boundary conditions: x = 0, a<r< d
the normal displacement is glven, and on the remainder of the boundary the
nermal stress 1s given, the shear stresses at z = 0 being known. Particu-
lar examples of such a problem are provided by certaln problems on stress
concentration in an infinite body with internal and external circular cracks
and also the contact problem for a hollow cylindrical (annular) die, which
has been studied by many authors.

As & specific example of the elasticity problems we shall solve the prob-
lem of & half-space under torsion from an attached rigid annular die. Here
the state of stress and strain is determined by the one function u,(r, z) = u,
which satisfles Equation

1 8 _ 0ou u *u

e P e s 4.

r ar  ar T g =0, 2>0 (:8)
and boundary conditions
du du
Ll =0, 0<aag haull =0 (49
83 lg=o <% 3 lp=n (49)
where ¢ 18 the angle of rotation of the dle.

If we seek a solution in the form

o0

ulgg=er, o< a<oo;

u=eb Veoshd F co5 BS B m“?-%ﬁ;’g‘;f" Pl ;- foshar) dt (4.10)

]

then the boundary conditions reduce to the dual integral equations

\ B(v) PL,, . dy = S
é (©) Pl ko) v = Srmts (2, <0< oo)

. (4.41)
5 B (ThanhaAtPl, ; foma)dr =0 (0 < a<ay)
0

We expfnd the right-hand side of the firsat equation in & Mehler-Pock
integral L6]



340 AN Ruhovets and Ia.S.Urliand

[ee]

tanh }/y 2 ) 54 o dv
Voo 31 = 2 V2Y Plsic ol o (4.12)
0

Then, taking B (1) + 2V 2 /coshtt = A (T)tanknt 8&nd taking into account
Formulas
o0

Tsinh (T p 1 1 d .
oot XT L ~Yptit Eoshar) dv = eod Va0’ P—‘/ﬂ-ir foshat) = s Py e koshat) (4.13)
0
we obtain the dual equations (4.3), where m = 1
i1 V2 4 i
T)=—=——— h{o) =12 -~ 4.
g cosh? 1 @) n dacosh?ij;a (4.14)
Therefore, by making the substitution 4.5} we reduce the problem to the
Fredholm equation (1.10) with the kernel (4.6) where
1 1hy 2Viz
G = — — O(r)= T2 Csint* .
&) x iy (=) ﬂzcdshl/gx+ sin/2 % (4.15)

the constant ¢ Dbeing determined from the condition olao) = 0 .

To obtain the complete solution we must express the angle ¢ 1m terms
of the torque applied to the die

b.21_: 8
M=——GS S Tor?drdd 'ro———a—uz

G 0
where G 18 the shear modulus. Taking into account the condition o(as) = O

we can express the normal derivative in (4.16), after certain transformations,
in the following form:

o (B0 << a<o0) (4.46)

‘md]

G
To= ¢ foshat + 1)'/’ _1_/_2 d Lﬁﬁ - S @’ (2) (coshr _”M)_l/' tan~! cosh ', — cosht
M ]

n da
(g << @ < 00) (4-17)

Carrying out the integration we find after a series of computations the
required relation in the form of & quadrature

o
16 Eosbety ~-costf 1/g 0l 3 , dt
== 3 — Yy ———
m— o fgedthn 0 S ¥ Ozt

3 a (@) t ] [cosht |1 \Y: taniil/gldl
+ Feny\ [ B ey 0] e )
o

(4.18)

When ao= O , Formula (4.18) gives the familiar relatlon for a circular
die.

In conclusion, we note that a number of other quantities can also be
expressed directly in terms of the basic function o(t) ; for example, for
the displacements of points on the circle £ =0, O < r < a we have For-
mula

%o

y, @
U lg_g = er - ebeoshl /s o:;mhaQ [9" () — coth t @ (t)] (eoshit —coshoi)” It i (&19)

a

P
O a<<ag)
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